Methods S1 — Data and model details, related to Figures 1, 2, and 3

£
i

Methods S1 Figure 1: Generation of z-stacks of transmitted light images of unlabeled cells, related to Figures 1 and 3.
To initially train the network and to test the predictions of the network, z-stacks of transmitted light images of a given
microscope field were generated by collecting a total of 13 images: one approximately at the focal plane and an additional
six images above and below that plane. In this example shown from Condition A, the 13 images in a stack were spaced 0.3
pm apart, spanning 3.6 pum along the z-axis. The location of each image relative to the central plane is given in microns by
the numbers to left of the images. The outsets illustrate how different planes capture different information about the sample
with some planes providing greater detail about intracellular structure and others providing more information about neurites
and cell morphology. Scale bars are 40 um. See also Figures 1 and 3.

Repeated

elementwise
mOd u Ie addition

feature
concatenation
RELU TANH
identity
passthrough balt.ch ti
fork and s normalization

f

feature
concatenation

—

k x k max pool
with stride s

feature
concatenation

/\

RELU TANH

~— ——

batch
normalization

.4

_—

previous layer

Methods S1 Figure 2: The repeated module, the basic building block of the deep neural network, related to Figure 3.
Data flows from the bottom to the top, along the indicated edges. Red operations contain variables to be learned, green
operations have no trained variables, and blue operations are batch normalization [Ioffe and Szegedy, 2015]. This module is
parameterized with three values: the number of features f, the size of the first convolution kernel k, and the stride s. CgxpanD
is a constant, which we set to 5.41 after hyperparameter tuning. It is used in one of three configurations: (1) in the in-scale
configuration, k = 3 and s = 1; (2) in the down-scale configuration, ¥ = 4 and s = 2; (3) in the up-scale configuration, k =
4, s = 2, the max pool is dropped, and the expand convolution is replaced with a transposed convolution [Zeiler et al., 2010],
followed by a center crop to make the convolution transpose more space invariant. In this crop, activations within two rows or
columns of the border are discarded. The convolutions and the max pooling are not zero-padded [Dumoulin and Visin, 2016],
meaning they don’t imputed missing activation values. See also Figure 3.

)
=]

20 20
110 26 110 20 110 20 10 2
2 22 22
104 26 10 2 10 2
12
92 26 184T 34
14
88 26 158 30
28 16 8
8226 136 26 272
6

Y

N
bN

X}

|

18 10
12 218 40
0
1

|

26
1
32 2 12
6 1026 184 34
1

52
442
1 1
54 22 14
44 26 104 26 158 30

|

24
92 26

|

2
88 26

|

6
28
8226
30
76 26

16

1
136T 2
126T 2

18

20

32

o a a a o P > P N ~

RN S B2 Bl 812 8l Bl Bl 8 3
N N

3 3 3 3 3 3 3 3 3 3

[102 x 102
PIXELS

Methods S1 Figure 3: The deep neural network, the full statistical model used for label prediction, related to Figure 3. The
rectangles and hexagons are the network modules: the rectangles are in-scale, the hexagons with flat bottoms are down-scale,
and the hexagons with flat tops are up-scale. The octagons at the bottom are raw pixels read from the unlabeled image stack,
and the octagons at the top are network heads, from which the predicted patches are derived for each fluorescent label. The
colors correspond to the spatial scale of each particular module. Purple is the native scale, blue is 2x downscale, green is 4x
downscale, orange is 8x downscale, and red is 16x downscale. The top number in each module is the number of rows and
columns of its output layer. The bottom two numbers are the numbers of features in the module’s expansion and reduction
layers, respectively. The network reads from a concentric set of five square patches, ranging in size from 72 x 72 pixels to
250 x 250 pixels, processes each one independently, merges them, does more processing, then predicts a number of 8 x 8
patches. See also Figure 3.

References

[Dumoulin and Visin, 2016] Dumoulin, V. and Visin, F. (2016). A guide to convolution arithmetic for deep learning.

[loffe and Szegedy, 2015] Ioffe, S. and Szegedy, C. (2015). Batch normalization: Accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502. 03167.

[Zeiler et al., 2010] Zeiler, M. D., Krishnan, D., Taylor, G. W., and Fergus, R. (2010). Deconvolutional networks. In Computer
Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on, pages 2528-2535.

